
Some Thoughts about Hits,
Geometry etc

Rob Kutschke, Caroline Milstene,
Hans Wenzel

Fermilab
March 13, 2007

Overview
• Extend our ideas about “hits” so that we can write the

next round of pattern recognition and fitters.
– Need clear separation between hits and geometry.
– Need to be able to navigate from hits to geometry.

• Building from:
– Exisiting code.
– Dima’s observations from a few weeks ago.
– Rich’s suggestions from March 6.
– Our own ideas of what we want for development of forward

tracking code at FNAL.
• So far in software we have:

– SimTrackerHit, RawTrackerHit, TrackerHit.
– These do not have the richness for all that we need to do.

• Need classes to represent new ideas that will be shown
in this talk.

3/13/2007 2

Goals for This Talk

• List all of the ideas that are important for
hits and sketch how they are interrelated.
– Do not need all details today.

• Understand where the data and MC
processing streams meet.

3/13/2007 3

Sensors
• Assume planar sensors. Is this safe long term? Safe for now?
• One bookkeeping unit of tracking software is the sensor.

– Need to organize hit strips by sensor in order to do clustering.
– Sensors have position and orientation.

• Same for all strips on wafer.
• Alignment will be done on a per sensor basis.

– Hot/dead channels may be maintained on per sensor or per readout chip basis. (
Or maybe be readout chip id?)

• Various pattern recognition codes will need different organizations of the
same hit information.

– Choose a basic representation for use by all and understand who is responsible
for the derived representations.

• Last week Rich presented a list of frequently used information that might not
be present in the “native” geometry representation and needs to be derived
from it.

– (u,v,w,r_global…): I agree that this is the information that we need.
– May need to add one or more things.

• How many sensors in SiD?
– O(20,000), including pixels + strips?
– Small enough that we can compute derived information once and cache it.

3/13/2007 4

3/13/2007 5

General Comments

• Next pages discuss the figure on the
previous page.

• Discussion and figure are shown for strips.
– Can be generalized to include pixels.

• Remember that this outline should work
not just for MC but also for actual ILC data
and for testbeam data.

3/13/2007 6

• Boxes 1…4
– Design driven by electronics and DAQ.
– No need to implement these now.
– These objects know nothing of geometry but do know about the

calibration database.
– Algorithm in box 4 might throw out strips with a pulse height below

threshold?
• Box 5

– The meeting point between data and MC.
– Internal organization is driven by the needs of the clustering

algorithms.
– Need to be able to ask this object:

• Give me a container of all hit strips/pixels on a single sensor.
• How do identify which sensor: SensorId …next page.

– Objects in box 5 do not contain geometry info, but one can find that
info using the SensorId.

– Strips meausure the u-coordinate.
• Strip object has no information global coordinates.

– If MC, must link back to box 17.
– If data, must link back to data in box 3.

• Link may be implicit if box 4 does not throw out information?

3/13/2007 7

What is SensorID?
• Something that exists for the purposes of lookup and cross-reference of

“hits” and of geometry info.
• Probably a derived product of the geometry system that can be created only

after the geometry is instantiated.
• Not a 64 bit cell Id.

– I really mean that it should be implemented at the sensor level.
– So we have about 20,000 of them.

• Possible implementations:
– Option 1: Multi-index object:

• Vertexer/Tracker; Forward/Barrel; Layer; phi-segment; z-segment?
– Option 2: A dense integer that indexes into an indirection array?
– Option 3: ???

• In any case we only want a single copy of the sensor geometry in memory.
• A SensorId should be a small object that can be added as member to data

to many objects.
• The operation of getting geometry information given a SensorID must be

fast because it will be done often.
– Any complexity needed for fast access should be implemented within the

geometry system.

3/13/2007 8

• Box 6:
– May need separate methods for strips and pixels?

• Box 7: Clusters
– Organization of this container needs to be chosen to optimize

pattern recognition algorithms.
– Need to be able to ask things like:

• Give me a container of all clusters on this sensor.
• Give me a container of all clusters on layer n of the tracker, within

the some specified bounds on z and phi.
– Maybe this is a method in some other class, not a method of box 7

???? If so, then box 7 only needs to know about the sensorid, not
other properties of the geometry.

– Cluster must be able to say which strips it includes.
– Need to be able to navigate from cluster to sensor geometry via

sensorid.
– Clusters measure the u-coordinate.

• Cluster object has no information in global coordinates.
– Cluster may contain a single strip.
– At this level, clusters know nothing about tracks.

• Do we require each strip/pix is in exactly one cluster? Probably at
this level?

3/13/2007 9

Aside: Crosses

3/13/2007 10

• In forward tracker we are considering two layers of
crossed strip sensors.
– Cross: intersection point of two clusters, one from each sensor.

• Probably specified in global coordinates.
– Conceptually similar to traditional 2-sided Si. But:

• Sensors are offset longitudinally (r or z).
• Sensors might be staggered transversely.
• Strips might be at arbitrary angle, not just 90o.

– For now don’t bother to define this further.
– Need to be able to get back to the underlying clusters.
– Need to be able to navigate quickly to geometry of both sensors.

• A given cluster can belong to many crosses.
– There will be ghost crosses.
– Pulse height correlation less powerful since two sensors.

• I think that crosses will be useful for pattern recognition
but that fitting will be done using two individual clusters.
– Because the two sensors are at different locations, unlike

traditional double-sided Si.

• Box 8:
– Only needed for strips, not pixels.

• Box 9: Crosses
– Same comments as for box 7 (clusters).

• Box 10:
• Box 11:

– Can fill TrackerHits from clusters or crosses.
– TrackerHit can link back to its precursor cluster or

cross.
• Dima agrees that this would solve his geometry access

problems.
• This will provide the link to the geometry that Rich was

talking about last week.
– Rich: does this solve your problem?

3/13/2007 11

Aside: Forwarding Functions?

• I said that TrackerHit links back to its precursor.
– I think it should have a method to return its precursor (

by reference, not value).
– I don’t think that it TrackerHit should inherit from cross

or cluster.
– I don’t think that it should forward methods from its

precursor. If you forward when do you stop? Does it
forward all of the geometry info that can be found by
following precursors to their geometry?

3/13/2007 12

• Box 12:
– Box should have been called pattern recognition and

track fitting.
– There are already many pattern recognition and fitting

codes. I presume they will coexist for a while and
then one or two will win out or will incorporate the
others.

– At FNAL we plan that our forward tracking code will
be driven by clusters and, maybe, crosses.

– Existing TrackerHit based code can still run and can
be extended for a proper treatment of strips.

3/13/2007 13

• Box 13:
– All tracking codes should produce the same track

objects.
– The track objects should contain a list of which

clusters, crosses, or TrackerHits that they contain.
– Track should also know about its residuals.
– The existing reconstructed track objects will need to

be extended to get all this in.
• Box 14:

– Once a cluster is assigned to a track we can compute
the fully corrected centroid.

• Corrected info is maintained here, not in box 7.
– If a cluster wants to be on two tracks, we might want

to split the cluster and this is the place to maintain
that bookkeeping.

• When a cluster is split, we will not modify box 7.

3/13/2007 14

The MC Side
• Box 15:

– These are made by SLIC.
• Box 16:

– I understand that prototype algorithms exist but that they are only
in private code?

• Box 17:
– I know what I want this to be but I am not sure that it is really a

RawTrackerHit.
– If it is RawTrackerHit, then that class must be modified to return

a container of contributing SimTrackerHits, not just a single
SimTrackerHit.]

– We must also provide a method to return how much electronic
noise was added to the true pulse height.

– See next page.

3/13/2007 15

Why both Boxes 5 and 17?
• Different internal organizations:

– Box 17 is organized for the convenience of MC hit creation.
– Box 5 is organized for the convenience of clustering algorithms.

• They understand different geometry abstractions:
– Box 17 knows cellids.
– Box 5 knows sensor ids.

• Much of the information present in box 17 is not present
in data. It is MC specific.
– I don’t like the idea that objects representing real data need to

know about MC classes in order to be instantiated.
– I need to know more about Java to before discussing options

here.

3/13/2007 16

• Box 18:
– First version of this can be very simple.

• Box 19:
– A reminder that we need to provide

convenience functions for navigating from the
reconstructed tracks back through the full
reco history and the full MC history.

– We can talk later about where these methods
live. Are they part of the existing classes or
are they their own classes or even free
functions.

• Keeping with my comment on forwarding functions,
I think that I will vote for one of the last two options.

3/13/2007 17

Short Cuts for FastMC

• We still need to support various short cuts
for fast MC.
– These are shown on the next page.

• In particular we do need to make perfect,
gaussian clusters, straight from the
SimTrackerHits, in order to certify that
pattern recognition and vertexing code are
correct.

3/13/2007 18

3/13/2007 19

Shortcuts for FastMC

Polymorphism and Inheritance
• How are hit pixel and hit strip classes related?
• In Boxes 5 and 7:

– What is the internal organization of the containers
• 4 containers: strips/pix, forward/barrel?
• Is there one container with everything?
• 2 containers?

– My guess is that internally we should maintain 4 separate containers but
provide interfaces that allow access in all ways.

– We can change the internal organization as we learn about real access
patterns.

• My experience: it produced more problems than it solved to treat
strips as pixels that just happen to one very long dimension: adding
a v measurement at the mid point of the strip can, in some
circumstances, poison the fitted track parameters.
– There is still lots of room for polymorphism and inheritance but we need

to be smart about it.
– I do think that the geometry information needed for a pixel sensor and a

strip sensor are the same: the quantities in Rich’s talk last week.

3/13/2007 20

Persistency

• Modified existing classes need to be
persistable.

• For development purposes it would be
great if boxes 5,7,9 were persistable.

• For production there are many things we
would choose not to write out.

• In the long run we will need to understand
what can be recomputed as needed so it
does not need to be written out.

3/13/2007 21

Visualization

• I have not thought this through yet. Just a
few thoughts for now.

• It can be useful to visualize a hit strip or a
cluster as a line segment.
– Will need some control to say which strips you

want to visualize and which to supress or else
the picture can get too busy to be useful.

• Clusters of pixels and crosses should be
straightforward for visualization.

3/13/2007 22

Summary
• Need to introduce the concept of SensorId

– Used to connect hits to geometry.
• Geometry system needs to provide the information Rich mentioned last

week, accessible by SensorId.
• Need new classes to represent:

– Structured containers of hit strips or pixels.
– Structured containers of clusters of strips or pixels.
– Structured container of crosses (strips only).
– These classes talk (u,v,w); no info in global coordinates.

• Some existing classes will need to be extended:
– RawTrackerHit: return a list of contributing SimTrackerHits
– TrackerHit: link back to is precursors.
– Reconstructed track: need to add a container of HitOnTrack information.

• Need new tools to ease the navigation from reconstructed back to
generated objects, and vice versa.

• New stuff needs to be persistable.
• Need to think of visualization.
• Need to understand where polymorphism and inheritance in the hit classes

and hit container classes are useful.
3/13/2007 23

What Next?
• Do people agree on the general outline?

– If not, let’s evolve it to get agreement.
• If yes then:

– Define the per sensor geometry information.
• Rich’s suggestion is complete or close to it.

– Who needs/wants to be in on the design of:
• SensorId?
• Modified classes?
• New classes

– What do we need to do to get persistency?
– Who will do which work?
– What is an aggressive but believable time scale for getting this

done? A few weeks? Longer?
• Who, outside of this group, needs to be in on this?

– Calorimeter and muon people?
3/13/2007 24

