
Some Thoughts about Hits,
Geometry etc

Rob Kutschke, Hans Wenzel,
Caroline Milstene

Fermilab
March 13, 2007

Overview
• Extend our ideas about “hits” so that we can write the

next round of pattern recognition and fitters.
– Need clear separation between hits and geometry.
– Need to be able to navigate from hits to geometry.

• Building from:
– Exisiting code.
– Dima’s observations from a few weeks ago.
– Rich’s suggestions from last week.
– Our own ideas of what we want for development of forward

tracking code.
• So far in software we have: SimTrackerHit,

RawTrackerHit, TrackerHit.
• These do not have the richness for all that we need to

do.
3/13/2007 2

Goals for This Talk

• List all of the ideas that are important for
hits and sketch how they are interrelated.
– Do not need all details today.

3/13/2007 3

Sensors
• Assume planar sensors. Is this safe? Safe for now?
• One bookkeeping unit of tracking software is the sensor.

– Need to organize hit strips by sensor in order to do clustering.
– Sensors have position and orientation.

• Same for all strips on wafer.
• Alignment will be done on a per sensor basis.

– Hot/dead channels may be maintained on per sensor or per readout chip basis. (
Or maybe be readout chip id?)

• Various pattern recognition codes will need different organizations of the
same information. Be ready to support this.

• Last week Rich presented a list of frequently used information that might not
be present in the “native” geometry representation and needs to be derived
from it.

– I agree that this is the information that we need.
• How many sensors in SiD?

– O(20,000), including pixels + strips?
– Small enough that we can compute derived information once and cache it.

3/13/2007 4

3/13/2007 5

General Comments

• Discussion is shown for strips.
– Can be generalized to include pixels.

• Remember that this framework should
work not just for MC but also for actual ILC
data and for testbeam data.

3/13/2007 6

• Boxes 1…4
– Design driven by electronics and DAQ.
– No need to implement these now.
– These objects know nothing of geometry.
– Algorithm in box 4 might throw out strips with a

pulse height below threshold?
• Box 5

– The meeting point between data and MC.
– Internal organization is driven by the needs of the

clustering algorithms.
– Need to be able to ask this object:

• Give me a container of all hit strips/pixels on a single
sensor.

• How do identify which sensor: SensorId …next page.
– Strips meausure the u-coordinate.
– If MC, must link back to box 17.
– If data, should probably link back to data in box 3?

3/13/2007 7

What is SensorID?
• Something that exists for the purposes of fast lookup and

x-ref of “hits” and of geometry info.
• Probably a derived product of the geometry system that

can be created only after the geometry is instantiated.
• Not a 64 bit cell Id.

– I really mean that it should be implemented at the sensor level.
– So we have about 20,000 of them.

• Possible implementations:
– Option 1: Multiple indexed container:

• Vertexer/Tracker; Forward/Barrel; Layer; phi-segment; z-segment?
– Option 2: A dense integer that indexes into an indirection array?
– Option 3: ???

• In any case we only want a single copy of the sensor
geometry in memory.

3/13/2007 8

3/13/2007 9

• Box 6:
– May need separate methods for strips and pixels?

• Box 7: Clusters
– Organization of this container needs to be chosen to optimize

pattern recognition algorithms.
– Need to be able to ask things like:

• Give me a container of all clusters on this sensor.
• Give me a container of all clusters on layer n of the tracker, within

the some specified bounds on z and phi.
– Maybe this is a method in some other class, not a method of box 7

???? If so, then box 7 only needs to know about the sensorid, not
other properties of the geometry.

– Cluster must be able to say which strips it includes.
– Need to be able to navigate from cluster to sensor geometry via

sensorid.
– Clusters measure the u-coordinate.
– Cluster may contain a single strip.
– At this level, clusters know nothing about tracks.

• Do we require each strip/pix is in exactly one cluster? Probably at
this level?

Aside: Crosses

3/13/2007 10

• In forward tracker we are considering two layers of
crossed strip sensors.
– Cross: intersection point of two clusters, one from each sensor.

• Probably specified in global coordinates.
– Conceptually similar to traditional 2-sided Si. But:

• Sensors are offset longitudinally (r or z).
• Sensors might be staggered transversely.
• Strips might be at arbitrary angle, not just 90o.

– For now don’t bother to define this further.
– Need to be able to get back to the underlying clusters.
– Need to be able to navigate quickly to geometry of both sensors.

• A given cluster can belong to many crosses.
– There will be ghost crosses.
– Pulse height correlation less powerful since two sensors.

• I think that crosses will be useful for pattern recognition
but that fitting will be done using two individual clusters.
– Because the two sensors are at different locations, unlike

traditional double-sided Si.

• Box 8:
– Only needed for strips, not pixels.

• Box 9: Crosses
– Same comments as for box 7 (clusters).

• Box 10:
• Box 11:

– Can fill TrackerHits from clusters or crosses.
– TrackerHit can link back to its precursor cluster or

cross.
• Dima agrees that this would solve his geometry access

problems.
• This will provide the link to the geometry that Rich was

talking about last week.
– Rich: does this solve your problem?

3/13/2007 11

Aside: Forwarding Functions?

• I said that TrackerHit links back to its
precursor.
– I think it should have a method to return its

precursor (by reference, not value).
– I don’t think that it TrackerHit should inherit

from cross or cluster.
– I don’t think that it should forward methods

from its precursor. If you forward when do
you stop? Does it forward all of the
geometry?

3/13/2007 12

• Box 12:
– Box should have been called pattern recognition and

track fitting.
– There are already many pattern recognition and fitting

codes. I presume they will coexist for a while and
then one or two will win out or will incorporate the
others.

– At FNAL we plan that our forward tracking code will
be driven by clusters and, maybe, crosses.

– Existing TrackerHit based code can still run and can
be extended for a proper treatment of strips.

3/13/2007 13

• Box 13:
– All tracking codes should produce the same track

objects.
– The track objects should contain a list of which

clusters, crosses, or TrackerHits that they contain.
– Track should also know about its residuals.
– The existing reconstructed track objects will need to

be extended to get all this in.
• Box 14:

– Once a cluster is assigned to a track we can compute
the fully corrected centroid.

• Corrected info is maintained here, not in box 7.
– If a cluster wants to be on two tracks, we might want

to split the cluster and this is the place to maintain
that bookkeeping.

• When a cluster is split, we will not modify box 7.

3/13/2007 14

The MC Side
• Box 15:

– These are made by SLIC.
• Box 16:

– I understand that prototype algorithms exist but that they are only
in private code?

• Box 17:
– I know what I want this to be but I am not sure that it is really a

RawTrackerHit.
– If it is RawTrackerHit, then that class must be modified to return

a container of contributing SimTrackerHits, not just a single
SimTrackerHit.]

– We must also provide a method to return how much electronic
noise was added to the true pulse height.

– See next page.

3/13/2007 15

Why both Boxes 5 and 17?
• Different internal organizations:

– Box 17 is organized for the convenience of MC hit creation.
– Box 5 is organized for the convenience of clustering algorithms.

• They understand different geometry abstractions:
– Box 17 knows cellids.
– Box 5 knows sensor ids.

• Much of the information present in box 17 is not present
in data. It is MC specific.
– I don’t like the idea that objects representing real data need to

know about MC classes in order to be instantiated.
– I need to know more about Java to before discussing options

here.

3/13/2007 16

• Box 18:
• Box 19:

– A reminder that we need to provide
convenience functions for navigating from the
reconstructed tracks back through the full
reco history and the full MC history.

– We can talk later about where these methods
live. Are they part of the existing classes or
are they their own classes or even free
functions.

• Keeping with my comment on forwarding functions,
I think that I will vote for one of the last two options.

3/13/2007 17

Short Cuts for FastMC

• We still need to support various short cuts
for fast MC.
– These are shown on the next page.

• In particular we do need to make perfect,
gaussian clusters, straight from the
SimTrackerHits, in order to certify that
pattern recognition and vertexing code are
correct.

3/13/2007 18

3/13/2007 19

Shortcuts for FastMC

Polymorphism and Inheritance
• How are hit pixel and hit strip classes related?
• In Boxes 5 and 7:

– What is the internal organization of the containers
• 4 containers: strips/pix, forward/barrel?
• Is there one container with everything?
• 2 containers?

– My guess is that internally we should maintain 4 separate
containers but provide interfaces that allow access in all ways.

– We can change the internal organization as we learn about real
access patterns.

• My experience: it produced more problems than it solved
to treat strips as pixels that just happen to one very long
dimension: adding a v measurement at the mid point of
the strip can, in some circumstances, poison the
measured track parameters.
– There is still lots of room for polymorphism and inheritance but

we need to be smart about it.
3/13/2007 20

Persistency

• Modified existing classes need to be
persistable.

• For development purposes it would be
great if boxes 5,7,9 were persistable.

• For production there are many things we
would choose not to write out.

• In the long run we will need to understand
what can be recomputed as needed so it
does not need to be written out.

3/13/2007 21

Summary
• Need to introduce the concept of SensorId

– Used to connect hits to geometry.
• Geometry system needs to provide the information Rich mentioned

last week, accessible by SensorId.
• Need new classes to represent:

– Structured containers of hit strips or pixels.
– Structured containers of clusters of strips or pixels.
– Structured container of crosses (strips only).

• Some existing classes will need to be extended:
– RawTrackerHit: return a list of contributing SimTrackerHits
– TrackerHit: link back to is precursors.
– Reconstructed track: additional information needed.

• Need new tools to ease the navigation from reconstructed back to
generated objects, and vice versa.

• New stuff needs to be persistent.
• Need to understand where polymorphism and inheritance in the hit

classes are useful.
3/13/2007 22

