2277-27

March 8, 2007

The Connection Between Hits and Geometry

Rob Kutschke, Fermilab CD

Abstract

This note presents a sketch of how one might connect tracking hit
information with its associated geometry information, where “tracking”
includes both pixels and strips. The note is intended to as a way point
on the discussion we started a few weeks ago and will include: a sketch
of how hit information flows, in experimental data, from the detector to
its incorporation into tracks; the corresponding path for hits from Monte
Carlo events; and a discussion of matching Monte Carlo reconstructed
tracks with generated tracks.

Contents
1 Introduction 1
2 Local and Global Coordinate Systems 2
3 Data Flow for Experimental Data I 3
3.1 Packed Binary Data 3
3.2 Unpacked Raw Data 3
3.3 Connecting the Hits to the Geometry 5
3.4 Clustersof Hits 7
3.5 Crossesof Strips L 8
3.6 Derived Data Products 8
4 Data Flow for MC Hits I 9
4.1 Precursorso v i i e e e e e e 9
A Information Needed in SensorGeom 10
B Some Further Comments on the Geometry Subsystem 12
C Questions 13

1 Introduction

For track finding and fitting, the main geometrical unit is the sensor. On pages
8 and 9 of the report we presented at Beijing, I count 8228 sensors in the barrel

silicon strip tracker. As a rough guess I will multiply this by 3 to include sensors
in the forward tracker plus the sensors in the pixel system. In round numbers
we have of order 25,000 sensors in the entire system.

In the following examples I will show some code fragments. For now they
are written in “mock C+4” just because that is the way I think. Hopefully this
is clear enough for this point in the discussion. Also, I have paid no attention to
the uses of inheritance and polymorphism; I think we need first to decide what
we want and then to decide where inheritance and polymorphism improve the
design.

Given a hit, we need fast, easy access to the geometry information. I propose
that the way to do this is:

1. To assign each wafer a unique Id.

2. For the geometry system to support a function that returns sensor geom-
etry information given the sensor Id.

The corresponding code fragment is,

class Sensorld;
class SensorGeom;
SensorGeom& getSensorGeom(SensorId);

where SensorGeomn is the information we need and where the function
getSensorGeom lives within the appropriate scope within the geometry system.
An illustration of the information that must be provided by SensorGeom is in
Appendix A.

My guess is that SensorId will just be a dense integer, so that one can use
it as an index into indirection arrays. But for now it’s just a class.

I have tried to choose class names that do not match any of the existing
org.lesim or SLIC classes. The intention is to give us nomenclature to separately
discuss the classes we need and the classes we have. Later we can discuss how
to morph the classes we have into those that we need.

2 Local and Global Coordinate Systems

In his recent talk, Rich defined the (u,v,w) notation to describe local coordi-
nates on a particular sensor. In this note (z,y, z) are always global coordinates
and (u,v,w) are always local coordinates. As a reminder, for a strip sensor, the
local coordinates are define by one vector and three unit vectors,

vector to the local origin on the sensor.

in the plane of the sensor, along the measurement direction.
normal to the plane.

W X U, in the plane of the sensor, along the strip direction.

g 3

These vectors are expressed in global coorinates; that is, 7y is the location, in
global coordinates, of the local origin of a sensor, and # is the measurement

direction on some sensor plane, expressed in global coordinates. Note that, for
an ideally aligned barrel strip sensor, ¢ is along +Z and, for an ideally aligned
forward sensor, w is along +2.

For a pixel sensor, @ and © are the two orthogonal measurement directions
in the plane.

3 Data Flow for Experimental Data I

This section discusses data flow from the detector to the tracking algorithms.
It will illustrate how the geometry information can be connected to the hits in
a way that I think is economical of both memory and CPU time. For simplicity
I will only consider barrel strip detectors but I will presume that we want to
consider some barrel layers which have two sensor layers, the second containing
some sort of stereo information. The data flow is illustrated in Figure 1 and the
corresponding classes are discussed below.

3.1 Packed Binary Data

The rawest form of data is packed binary data straight from the event builder.
As far as this note is concerned, it is just a blob that can be unpacked. We do
not need to know the internal structure. This is represented by the top box in
Figure 1. I presume that this data is held by the event data model (EDM).

3.2 Unpacked Raw Data

The first step in processing the data is to unpack it in order to provide structured
access to the information. This process should be lossless and it should report
errors when it encounters inconsistent data. This produces the second box
from the top in Figure 1. This box holds a single container of objects called
UnpackedSensorInfo, each of which represents a single hit strip:

class ElectronicAddress{
// Not specified in detail.
// It contains a chip Id, a channel number within the chip ...

};

class TimeStamp{
// Not defined in detail.
};

class UnpackedSensorInfo{

public:
// Data members
ElectronicAddress add;
short int iadc;

Packed binary data from DAQ/Event Builder

1:1 ie no loss of information

Structured copy of the previous box. No geom info

Container<UnpackedSensorInfo> SInfo;

Cuts: Low ADC, hot/dead channels, ...

Container of (Container of hits on one sensor):

SensorStripHitContainer;

Strip Clustering Algorigthm

Container of (Container of clusters on one sensor):

SensorStripClusterContainer; ——

Container of cross—strips.

Not specified in yet.

Various derived Data Products
optimized for various reco algorithms

Denotes objects that have references to geometry object

Figure 1: The main objects on the path of barrel silicon strip data as it starts
at the detector and is processed into tracks. The items in rectangles represent
objects that are held by the event data model (EDM). Outlines of the objects
are given in the text.

TimeStamp t;
};

By design these classes are independent of the geometry and calibration systems.
They are simply a structured representation of the data at the previous level.

I am not sure that we need a timestamp but I have included one for com-
pleteness.

Each UnpackedSensorInfo object is realy just a struct whose data is com-
plete at instantiation and never changes until the object is destructed. These
objects should be treated as such; that is their only methods are their construc-
tors and destructors. We can debate another day if we should make the data
private and provide accessor functions.

I presume that the Container<UnpackedSensorInfo> object is held by the
EDM.

3.3 Connecting the Hits to the Geometry

The third box in in Figure 1 contains the first objects in which the hit infor-
mation is connected to the geometry and the conditions data. This box holds a
container of containers of hit strips, with one outer container per sensor. The
object representing a single hit strip is,

typedef int StripNumber;
typedef double ADC;

class StripHit{

public:
StripNumber iu;
short int iadc;
ADC adc;
TimeStamp t;

};

These objects are collected into containers, one per sensor,

class SensorStripHits{
public:
Sensorld sid;
SensorGeom& sgeom;
Container<StripHit> hit;

};

where I have used “Container” as a placeholder for your favorite container type.
The object that holds all of the hits for all of the sensors will look something
like,

class SensorStripHitContainer{

// Accessor methods:

public:

bool hasStripHits(SensorId);
SensorStripHits& getStripHits(SensorId);

private:
map<Sensorld,SensorStripHits> SSHits;

};

For conceptual purposes, I have represented the big container of containers as
map. On the other hand, if SensorId is just a dense integer, this could be
implemented an array of SensorStripHits:

vector<SensorStripHits> SSHits[SensorId];

This is would yield fast retrieval of the geometry information given a Sen-
sorld.

I presume that the SensorStripHitContainer object is held by the EDM.

Some additional comments on this design,

1. The class SensorStripHits contains a reference to the geometry of the
sensor. This is the main point of this document: it is one way to ensure
that, whenever you have access to some hits, you also have fast access to
the associated geometry information.

2. This reference is computed only once per sensor per event.
3. The grouping of hits by sensor also connects this class with the geometry.

4. The class SensorStripHits contains a copy of the Sensorld. This is might
be redundant but it also might be useful for debugging.

The transformation from the previous box, in its full complexity, is a heavy-
weight step:

1. It needs access to the full conditions data base to access pedestals and
gains for the ADCs, to access the list of hot/dead channels, and to access
the map from electronic addresses to sensor/strip.

2. It is allowed to discard data. One might discard data because the ADC is
below threshold, because the strip is on a list of known hot/dead channels
or because the hit is out of time.

3. There no links from this container back to precursor containers: the only
repeated data are iadc and the timestamp, which are about the same
impact as a back link.

3.4 Clusters of Hits

The next step in the data processing is to form clusters of hit strips, which is
represented by the fifth box in Figure 1. A cluster may contain a one or more
strips. Cluster finding takes place within each sensor, without reference to other
sensors, so the organization of the preceeding section can be duplicated.

class StripCluster{
// Data Members
Container<int> strips;
double pulseheight;
double centroid; // Measures u
double sigma; // Error on u.

// Member functions

double Centriod(double theta);
double Sigma(double theta);

double Pulseheight(double theta);

};

The first data member is a list of the strips that make up the cluster. In
this example it is implemented as a container of ints; each int is an index
into the SensorStripHits container for this sensor. We could also choose to
implement this as an array of references to those hits. The next data member
is the pulseheight of the cluster, the sum of the pulseheights of the contributing
strips. The next two data members are the first guess at the centroid and the
error on the centroid, which are made without associating the cluster with any
track. Both of these are measurents along the 4 direction. I chose to drop
the timestamp in this object; if needed, it can be found by reference to the
contributing strips.

There are three member functions, which can only be used once the cluster is
associated with a track. All three take an argument which is the angle that the
track makes with the normal to the sensor. One can get an improved estimate
of the centroid and the sigma when this angle is known. I am not sure if we
learn anything more about the pulse height once the angle of incidence is known
but I have included such as function for completeness.

The container that holds all of the clusters on a given sensor is modelled on
SensorStripHits container; again it contains a connection to the geometry.

class SensorStripClusters{
public:
Sensorld sid;
SensorGeom& sgeom;
Container<StripCluster> hit;

};

Again there needs to be an object to hold the container of containers,

class SensorStripClusterContainer{

// Accessor methods:

public:

bool hasStripClusters(SensorId);
SensorStripClusters& getStripClusters(SensorId);

private:
map<Sensorld,SensorStripClusters> SSClusters;

};

Again the use of map is just for conceptual purposes and other implemen-
tations are possible, perhaps prefered.

I presume that the SensorStripClusterContainer object is held by the
EDM.

3.5 Crosses of Strips

In a traditional double sided strip dectector, the readout strips on the back side
run orthogonal to those on the front side. That is, if the strips on the front side
measure the 4 coordinate, then those on the back measure the ¥ coordinate.
There are no such sensors planned for SiD but the options under consideration
do include crossed single sided sensors placed more or less back to back.

For a traditional double sided sensor, the next step in data processing is to
form “crosses”, objects that describe the (u,v) intersection point of each pair
of strips. Consider, for example, a sensor that has two real tracks pass through
it. In the typical case this will create two clusters of hit strips on each side,
which can be paired to make four crosses, two which correspond to real track
intersection points and two of which are ghosts. In my experience the crosses
were the objects used by pattern recognition code but the fitters used directly
the underlying strip information.

In the designs discussed for SiD we probably need a more general solution
than this. In the forward tracker we are talking about crossed one-sided strips.
However the crossing angle is not necessarily 90 degrees. Even it if were designed
to be 90 degrees, construction tolerances would make it something else. More
the two sensor planes are not necessarily back to back, which means that a
“u-measuring” sensor might overlap two different “v-measuring” sensors.

Therefore we will leave the classes related to crosses, and containers of
crosses, unspecified for now. We just note that they will be needed and that
the big container of containers will be held by the EDM.

3.6 Derived Data Products

The bottom box in Figure 1 is there to remind us that particular pattern recogni-
tion and fitting algorithms will need derived data products. These data products
will generally take two forms:

e Different organizations of the same information, organized to provide fast
convenient access for some algorithm.

e Once you connect a track to a cluster , you can compute a new estimate
of the centroid. During the pattern recognition process, one may try one
cluster on many different candidate tracks. Therefore it may be useful to
create many hits-on-a-track objects from one cluster object, each hit-on-
a-track attached to a different candidate track.

4 Data Flow for MC Hits 1

This section is the analog of the previous section but for hits that originate
in MC simulation, not from the detector. Again, for simplicity we will only
consider barrel strip detectors. Figure 2 shows the an outline of data flow; it
differs from the earlier figure only in the first two boxes, drawn in red.

4.1 Precursors

The precursors are not described in detail in this note. They include the
SimTrackHit objects and any intermediate objects used to compute the pulse-
height on each strip. The class that describes the pulse height on each strip will
look like,

class MCTrackId{
// Not specified yet.
};

typedef double ExactADC;

class MCTrackADC{
MCTrackId trk;
ExactADC adc;
Timestamp t;

};

In this picture, we need some sort of identifier, MCTrackID, to uniquely
identify every track in the MC chain. Given just this identifier it should be
possible to trace where the particle comes from. Among other things, MCTrackId
needs to be rich enough that it can identify tracks and photons that come
from beamstrahlung. We also need to define the idea of the correct known
contribution to the pulseheight, ExactADC; this includes the effects of diffusion,
recombination, Lorentz forces, and the Hall effect but it does not include the
response function of the electronics. Next we need a class to tell us that a given
track created a certain pulse height on a given strip and that it did so at some
time, MCTrackAdC.

With the above tools we can construct a class to summarize the full history
of the pulse height on a each strip,

class MCStripHit{

public:
StripNumber iu;
Container<MCTrackADC> Energy;
ExactADC noise;
ExactADC adcsum;
Timestamp t;

};

I propose to collect these in a container of containers, exactly parallel to the
container structure for hits from the experiment:

Presumably this is all persistable but we would only persist it when doing
detailed studies. For physics benchmarking studies we would drop it.

Glitch with hits below threshold in MC? No: there is a separate threshold
for clustering?

A Information Needed in SensorGeom

The following class illustrates the information needed from the geometry system
for each sensor.

class SensorGeom{

public:
SensorID id;
SubSystem type; // See below. Might not be needed?
double r[3]; // \hat{r}_0.
double ul3], v[3], w[3]; // unit vectors along the u,v,w axes.
double dim[3]; // Dimensions along the u,v,w axes.
double pitch[2]; // Pitch along the u and v axes.
// Do we need?
77777 // A reference back to full geom info?
};

where SubSystem is a bookkeeping convenience defined by,

enum SubSystem { BarrelPixel, ForwardPixel,
BarrelStrip, ForwardStrip};
int nSubSystems(ForwardStrip+1) ;

If the equivalent information is already directly, and quickly, available, from
the existing geometry system, we do not need this class and our code can talk
directly to the existing geometry system.

It is redudant to carry the Sensorld around in the object but I find it a
powerful debugging convenience.

10

SimTrackerHits, Digi’s, Summed Digi’s and
other precursors

many : many

Container of (Container of MC hits on one sensor

MCSensorStripHitContainer;

1:1 map

Container of (Container of hits on one sensor):

SensorStripHitContainer;

Strip Clustering Algorigthm

Container of (Container of clusters on one sensor):

SensorStripClusterContainer; ——

Container of cross—strips.

Not specified in yet.

Various derived Data Products
optimized for various reco algorithms

Denotes objects that have references to geometry object

Figure 2: The main objects on the path of barrel silicon strip data as it starts at
in MC simulation and is processed into tracks. The items in rectangles represent
objects that are held by the event data model (EDM). Outlines of the objects

are given in the text. 1

I have not defined any methods for this class since it is essentially a con-
venience class for accessing a subset of the information on each sensor. If
someone wants the full power of the geometry system, they can follow the
pointer /reference back to the geometry system and access its methods directly.

To complete the geometry specification we need to define a few conventions,
such as: Conventions we need to define to complete this:

e Where is the local orign: at the center of the “top” surface, at the body
center, at a corner, at an edge?

Are dimension full lengths or half lengths?

e Is w an inward normal or outward normal or someother convention.

For pixels, which is u and which is v?

e Do we want to define now the methods one would need to deal with non-
flat wafers?

B Some Further Comments on the Geometry
Subsystem

Here are some thoughts about some useful methods that might live within the
geometry system.

Suppose that I have a candidate track that has hits on some subset of the
layers and I want to look to the next layer and ask if there are any hits from
that layer that fit the track candidate. Here is how I think of the problem.

1. Extrapolate my track to the nominal radius of the next barrel layer, or
the nominal z of the next forward layer. Probably this is done using the
full knowledge of the magnetic field.

2. Look for sensors in that layer that fall within some “search window”
around the extrapolated track. Return a list of SensorId’s for all sen-
sors that fall within the window. Because sensors have overlaps, it is
always possible to return more than one sensor, even with an arbitrarily
small search window. It might not be necessary to consider the magnetic
field when doing this search?

o At later stages of the track finding/fitting, the search window might
be defined by the footprint (covariance matrix) of the extrapolated
track. At earlier stages of track finding the, the search window might
be some nominal distance that is a parameter of the algorithm.

3. For each sensor in the list, get the SensorStripHits container and test
hits in that container to see if they are compatible with the track.

This use case suggests that the geometry subsystem (or some system) needs
a function like:

12

Container<SensorId> FindIntersections (SubSystem, Layer, Track&, SearchWindow);

where SubSystem was defined earlier, and Layer is a layer number within that
subsystem, where Track is an object that holds track parameters plus a covari-
ance matrix, and where the search window is somehow specified by the last
parameter. In an actual implementation, the arguments might really be refer-
ences to objects within the geometry system rather than codes/indices into the
geometry system that are present in this example.

One could also imagine a more general function which finds the next group
of sensors encountered by a track, considering all layers in all subsystems.

Container<SensorId> FindIntersections (Track&, SearchWindow);

In such a function the search window might needs to be a function of arc length
from the last measurement.

The latter function is probably more useful for a general prototype pattern
recognition program while the former function is probably more useful for a
highly tuned pattern recognition program that exploits knowledge of the detec-
tor in order to gain speed.

C Questions

1. I need to include Dima’s suggestion about Clusters-;Hits.
2. Hit is really badly overloaded. Fix it.
3. Raw is badly overloaded. Fix it.

4. How detailed is MCTrack Id. Do we want to trace every delta ray? What
about albedo? Do we care about the full history of the albedo particle or
just that it is albedo?

13

