ILC/ATCA – a journey of discovery…
Understanding the Arrow ATCA Starter Kit, and what it reveals about using ATCA for the ILC Controls and Instrumentation.
Authors

Michael Haney, Michael Kasten

Last modified
1 Aug 2006 – document started

1 Nov 2006 – document updated

21 Jun 2007 – updated to reflect lesson learned from reconfiguring the system after it had been loaned to another group on campus…

Disclaimer

No claim of expertise is expressed or implied. This is what we did, and what we think we saw.
Conjectures are flagged (?)

Table of Contents

Basic Operations:
Hardware Inventory

Documentation Inventory
Board/Slot Placement

Front Panel Ports

Front Panel Serial Ports

Serial Port Configurations

Board ‘Wake-up’
Operating Systems
Network Setup

IP Addresses

When patience is required…
LED indicators

Shelf Manager Access: Command Line
Shelf Manager Access: Web Server
Shelf Manager Access: SNMP
Shelf Manager Access: RMCP
Advanced Operations:

Running Apache on CPU Blade
Running High-Availability Heartbeat on CPU Blades
Hardware Inventory
The ATCA Starter Kit, as we received it, came as a 6-slot horizontally-loaded ATCA crate, presumably the Carlo Gavazzi ATCA Shelf: 6861000-01 with a Carlo Gavazzi Extender Board, SMM08-E. (We have no hardware documentation on the Extender Board.) We received 3 additional boards, a Znyx Networks ZX5000 Base Fabric Switch, and two Intel MPCBL0001 Dual Xeon Processor Boards.
Documentation Inventory
The entire documentation for the Starter Kit was a CD by Carlo Gavazzi:

SMM08 Shelf Manager Docs CD:

User Documentation

Ipm sentry shelf – external interface

Ipm sentry user guide

Shelf-manager release notes

Monterey Linux Documentation

Programmer’s guide

User’s guide

Release notes

ShMM Specifications

Bench top carrier

Hardware architecture

Firmware & OS layer

IPM foundation

Software architecture
Arrow provided a pair of setup user guides: ArrowA, ArrowB. The arrow docs appear to refer to the unconfigured kit [ArrowA], and a version that someone configured with LynxOS and BlueCat [ArrowB]. Therefore, if you have a bare kit, it may be unwise to read too much into the B document. Nevertheless, the B document does hold valuable clues, if you can decide what to ignore.

PICMG, the authors of the ATCA specifications have released a short form of those specs: PICMG 3.0 Shortform Specifications. These are very useful to get up-to-speed on ATCA. The full specifications are available for purchase from PICMG http://www.picmg.org. To really understand the inner-workings of a shelf manager, the full specifications are a necessity.

IPMI (Intelligent Platform Management Interface) documentation is also freely available on the Internet. In conjunction with other documentation, it is very useful to understand what’s going on.

IPMI 2.0

IPMB Protocol

IPMI Address Allocation

IPMI FRU Storage
Board/Slot Placement

“Backplanes support the Base Interface in a Dual Star topology with Hub Slots located in Logical Slots 1 & 2.” (PICMG 3.0 - 6.5.1) The Starter Kit abides by this statement; the labelling of Slot Numbers on the Starter Kit correspond to Logical Slot Numbers. The documentation from Arrow is WRONG to show the Znyx switch in (labelled/logical) slot 5. We have put the Znyx switch in both slots 1 and 2 and have seen full functionality.

The Shelf Manager Extender Board can be put in any slot (we confirmed this). There is a special backplane connector in slot 6 that carries fan tachometer information from the 6 fans in the crate to the Shelf Manager. So we normally keep the Shelf Manager Extender Board in slot 6.
The Intel CPU blades can reside in any slot – even slots 1, 2 or 6. These blades do not have a front panel ethernet port; ethernet access is obtained through the Base Interface connection to slots 1 and 2, of which at least one should have the Znyx switch.
 Our basic board/slot configuration within the Starter Kit is as follows:

· Slot 6:
Carlo Gavazzi Extender Board
with Pigeon Point Shelf Manager Mezzanine Board

· Slot5:
blank

· Slot4:
Intel MPCBL0001 Dual Xeon Processor Board

· Slot3:
Intel MPCBL0001 Dual Xeon Processor Board

· Slot2:
blank (available switch slot)

· Slot1:
Znyx Networks ZX5000 Base Fabric Switch

Hereafter, in this document, the shorter titles will be used:

Carlo Gavazzi Extender Board

“Shelf Manager”

Intel MPCBL0001 CPU Board

“CPU Blade”

Znyx Networks Base Fabric Switch

“Znyx Switch”

Front Panel Ports
From left to right, horizontally, the boards have the following ports:

Shelf Manager

DB-9M:
RS-232 Serial Port

RJ-45:

hardware redundancy link to a 2nd Shelf Manager, “Serial 0”

RJ-45:

10/100 ethernet ports, “Ether 0”

RJ-45:

10/100 ethernet ports, “Ether 1”

Port:

Direct IPMB connection

CPU Blade

USB:

USM Port

RJ-45:

RS-232 Serial Port

Znyx Switch

RJ-45:

Management Port

RJ-45:

RS-232 Serial Port

RJ-45:

ZRE0: 10/100/1000 ethernet port

RJ-45:

ZRE1: 10/100/1000 ethernet port

RJ-45:

ZRE2: 10/100/1000 ethernet port

Front Panel Serial Ports

 All the boards have a Front Panel Serial Port. The Shelf Manager has a DB-9M style connector while the CPU Blades and Switch Board have RJ-45 style connectors. Since most of our consoles use DB-9, we built an adapter to convert over to RJ-45.
RJ-45 connector. Looking into the cable-end,
1 RTS

2 DTR

3 TxD

4 Gnd

5 Gnd

6 RxD

7 DSR

8 CTS

 [MPCBL001, pg 88]
To construct a DB-9F connector suitable for serial port connection to a PC,

[image: image1.png]RJ-45 Pin
DB-9F Pin

1 8

2 6

3 2

4 1

5 5

6 3

7 4

8 7

 [ArrowB][MPCBL001, pg 89]

Note that due to the inherent vagueness of RS-232 and DCD/DTD (i.e. which is the modem and which is the terminal), it is possible that a null-modem will be required.
In our case, a VT-510 terminal was selected over the PC, and necessitated the following inversion:

RJ-45 Pin
DB-9F Pin

RTS
1
7 CTS (blue)

DTR
2
4 DSR (orange)

TxD
3
3 RxD (black)

GND
4
1 GND (red)

GND
5
5 GND (green)

RxD
6
2 TxD (yellow)

DSR
7
6 DTR (brown)

CTS
8
8 RTS (grey)

The colors shown above correspond to some RJ-45 to DB-9F adapters that we salvaged from somewhere; your colors may differ.
Although not part of the starter kit, the Kaparel Shelf Manager also has a front panel serial port which employs an RJ-45 connectors. Unfortunately, it is not the same pin assignment as the CPU Blades and Switch Board. The pinout is:

RJ-45 Pin
DB-9F Pin

DSR
1
6 DTR (blue)

DCD
2
1 GND (orange)

DTR
3
4 DSR (black)

GND
4
5 GND (red)

RxD
5
2 TxD (green)

TxD
6
3 RxD (yellow)

CTS
7
8 RTS (brown)

RTS
8
7 CTS (grey)

Do not confuse this with the CPU Blades or Switch!

Serial Port Configurations

By trial and error, we determined that ALL the boards have the SAME configuration:

Slot6:
Shelf Manager

· 9600 Baud

· 8 bit, 1 stop, no parity

· no flow control

Slot4:
Intel CPU

· 9600 Baud

· 8 bit, 1 stop, no parity

· no flow control

Slot3:
Intel CPU

· 9600 Baud

· 8 bit, 1 stop, no parity

· no flow control

Slot1:
Znyx Switch

· 9600 Baud

· 8 bit, 1 stop, no parity

· no flow control

Board ‘Wake-up’

To get the boards in a usable state, we needed to confirm they had

1) an operating system

2) ethernet communication

There is some help in the Arrow documents. We also improvised.

Shelf Manager

The Shelf Manger comes preprogrammed and ready to operate. Its entire operating system and file structure are downloaded from Flash Memory. We just insert the board in the crate and it just starts up. Pigeon Point, the developers of the core Shelf Manager, implement their proprietary version of Linux, Monterrey Linux. Monterrey employs BusyBox, a group of tiny Linux utilities, including a login sentry.

At delivery, the username/password entry into the system is:

username = root

password = <none>

The password for ‘root’ can be changed with ‘passwd’ command. However, since the Shelf Manager is a little-used platform (i.e. there is little reason to log into it after it is configured) there is the risk of no one remembering what the password was changed to… (don’t laugh – it happened). In this case, it is necessary to get into the ARMboot “bios” of the Shelf Manager:

<reset or power-cycle the ShM>

“Hit any key to stop autoboot: “ – press a key

ShMM#
At the “ShMM#” prompt:

ShMM# baudrate=9600

(if you need this)

ShMM# ipaddr=192.168.206.106
(if you need this)

ShMM# netmask=255.255.255.0
(if you need this)

ShMM# gateway=192.168.206.1
(if you need this)

ShMM# hostname=frodo_0

(if you need this)

ShMM# password_reset=y

(you need this!)

ShMM# saveenv

(to save everything)

ShMM# reset

(to (re)boot)

Note: “saveenv” writes persistent values into FLASH. The password_reset is not a persistent value. Hence, if the only goal of the exercise is to reset the password, then the “saveenv” is not needed. This is just a convenient place to list the parameters that one might change in ARMboot. [ipm sentry user guide, pp 11-18]

BusyBox does not challenge a non-passworded ‘root’ account.

The only ethernet port designed to communicate outside to the ‘outside world’ is ‘Ether 0’. The Linux port eth0 is mapped to this hardware port. ‘Ether 1’ (eth1) is designed as a link to a 2nd Shelf Manager. The 3rd RJ-45 connector, ‘Serial 0’ is not an ethernet port (although it uses an RJ-45 connector on the Carlo Gavazzi ATCA front-board implementation of the Shelf Manager).

The eth0 port can be configured at many levels. In ARMboot (above), eth0 is variously set by:

ShMM# ipaddr=value

ShMM# rmcpaddr=value

ShMM# saveenv

The “ipaddr” is (?) the physical port, and “rmcpaddr” is the logical port used for RMCP traffic. And in the case of the ShM, this is eth0.

After BusyBox has been booted, conventional Linux commands can be used to configure eth0 (note that “#” is the prompt):
ifconfig eth0 dn

ifconfig eth0 192.168.206.106

ifconfig eth0 up

This assignment is not persistent; the eth0 port will revert to it’s ARMboot ipaddr, and then rmcpaddr, in that order (?) on reboot. To make the assignment persistent:

clia lansetup 1 ip 192.168.206.106

clia lansetup 1 subnet mask 255.255.255.0

clia lansetup 1 dft gw ip 192.168.206.1

[ipm sentry user guide, pg 18]. Be aware that these assignments are made very late in the boot process, after BusyBox is running and a log-in prompt is offered! Don’t expect the lansetup values to be available immediately…
Znyx Switch

The Shelf Manager must be in place for the Switch to boot.
(The ShM authorizes Power-up for the boards; without (authorized) Power, nothing happens…)

The Znyx switch is self-managing. No setup is required (including port changes) in order for it to work. The IP Address for the switch, by default, is 10.90.90.90. Any changes to this address are volatile – a power-cycle of the switch reverts its ‘known’ IP Address back to 10.90.90.90. We have not come across a great need to communicate with the switch and keeping its inner workings OFF the crate LAN has been a security measure against accidentally messing with it.

The ZRE[0-2] ports provide a pathway to ‘talk’ to the CPU blades. It was a mistake to simultaneously connect two (or more) of the ZRE[0-2] ports to the local network switch outside the crate.

Note: the Shelf Manager has an Ethernet port and supports HTTP (as well as rlogin, RMCP, etc.) If you want the ShM to be accessible, and don’t have an external switch handy, you can use a short UTP cable to connect the ShM Ethernet port to (e.g. ZRE2, and then connect ZRE0 to your external network. This leverages the front panel ports of the Znyx switch. Of course, this is not a high availability solution. Just a cheap one.
CPU Blade
The Shelf Manager must be in place for the CPU blades to boot.
(The ShM authorizes Power-up for the boards; without (authorized) Power, nothing happens…)

The CPU Blades were delivered without an operating system. Fortunately, there is BIOS to load media and operate the serial port. [MPCBL001, pg 113] Via the serial port we instructed the BIOS to ‘look’ for media on the USB port. We downloaded Fedora Core 5 Linux http://fedora.redhat.com onto a collection of CDs. (The choice of Fedora was driven more by available documentation to get something loaded versus perhaps a more appropriate OS such as Scientific Linux.) With a USB-port CD drive (i.e. a conventional CD drive in an outboard disk-drive enclosure with a USB port) we connected the CD driver to the USB port on the CPU blade. On power-up of the CPU blade, the BIOS ‘saw’ the boot block on the CD and launched IsoLinux, a boot utility.

Since there is no monitor nor keyboard like a PC would have, we had to direct IsoLinux to receive/transmit data through the serial port with the following command:

> linux console=ttyS0 text

Thereafter IsoLinux retrieved the remainder of the Fedora Core 5 code onto a hard drive on the CPU blade. On subsequent power-cycles we now had an operating system. Note: if it becomes necessary to hack into the CPU bladed (e.g. the root password was forgotten…),

> linux single

> linux emergency

This will boot the CPU in a single-user mode, and allow access to the /etc/passwd and /etc/shadow files (for password removal).

Users were added using:

mkdir /home/physics

adduser –u 122 –g 100 –d /home/physics/mjh mjh

Don’t try edit /etc/password and /etc/shadow by hand to create a new user. This may have worked under Unix, but Linux has two many side effects.

To configure eth0 to our desired IP Address:

ifconfig eth0 dn

ifconfig eth0 192.168.206.104
ifconfig eth0 up

See below for a map of network address assignments. Unencumbered by thought, we assigned node addresses “geographically” (slot 4, port eth0 is “.104”).

Note that “ifconfig” is not a persistent assignment. In order to (re)configure a CPU blade under Fedora:

Commands:

hostname pippin_0.ilc.hep.uiuc.edu

domainname ilc.hep.uiuc.edu

Files:

/etc/resolve.conf – must contain relevant DNS addresses

/etc/hosts – should include the host name

127.0.0.1 localhost.localdomain localhost

192.168.206.103 merry_0

192.168.206.104 pippin_0

/etc/sysconfig/network – must include (for example)

NETWORKING=yes

HOSTNAME=192.168.206.104

/etc/sysconfig/network-scripts/ifcfg-eth0 – must contain (e.g.)

DEVICE=eth0

BOOTPROTO=static

BROADCAST=192.168.206.255

HWADDR=00:0E:0C:9D:39:F6

IPADDR=192.168.206.104
NETMASK=255.255.255.0

NETWORK=192.168.206.0

ONBOOT=yes

GATEWAY=192.168.206.1

TYPE=ETHERNET
These are required to configure the CPU blade appropriately (and persistently) at boot time.

There is no ethernet port on the front panel of the CPU blade. There are two ethernet ports on the CPU blade that connect to the Base Interface. One is directed to Slot 1 and the other to Slot 2 of the Base Interface. Since we have only one switch to occupy one Slot on the Base Interface, only one of the two ports is usable at a time. The CPU blade has enough ‘smarts’ to make eth0 and eth1 transparent to the user as to which physical port is in use.

Beware of the system date. The CPU blade has a battery for maintaining the time, but somehow this slipped to Jan 2003 on merry_0. The date can be changed using:

date 062114252007

The format is MMDDhhmmCCYY.

Fedora Core 5 was installed, and irregularly maintained using

yum update

with no special concern as to which packages were changed. For an extended period of time (6 months), however, the blade was not updated. Yum failed (perhaps due to the date slippage (above)?), which ultimately required

yum remove kernel-smp-2.6.17.1.2174_FC5.i686

yum remove “samba*”

yum remove cman-kernel-smp.i686

The cman package is (?) associated with cluster management. We were trying to update from kernel 2.6.15 to 2.6.20, and cman-kernel-smp (and related packages) demanded support from the 2.6.17 kernel. However, yum was unable to install the 2.6.17-1.2187 kernel, creating an impass. Removing cman allowed the “yum update” to proceed without problems. We will find out later (maybe?) if we need cman.

Note: repenting for 6 months of non-updates required 168Mbytes of download, and well over 90 minutes of dedicated processing to return to current status.

Operating Systems
Shelf Manager

Monterrey Linux with BusyBox – nonvolatile, delivered

CPU Blade

Fedora Core 5 (Linux) - loaded from CD via USB

Znyx Switch

OpenArchitecture (Linux) - nonvolatile, delivered

Note: All the boards start with ‘root’ username access with no password.
Network Setup

We set up a small LAN, firewalled behind our building LAN. Two Desktop PCs, one Windows-based, the other Linux-based were set up in one room and the ATCA Starter Kit was set up in a different room.
 Linux-PC

 |

 room A room B local

 switch ----------hub ------ switch ---- to Shelf Manager Extender Board ‘Ether 0’
 | to ZNYX Switch Blade ‘ZRE1’
 Windows-PC

The ‘local switch’ is a 8-port Linksys SD2008. The wiring to/from this switch is as follows:

1 port connected to ‘room’ hub

1 port connected to ‘Ether 0’ port of Extender Board.
(Do not want to use ‘Ether 1’ or ‘Serial 0’.)

1 port connected to ZRE1 port of ZNYX Switch Blade.
(Could alternatively use ZRE0 or ZRE2. Do NOT want to connect the local switch to more than one of ZRE[0-2] at the same time. The ‘ETH0’ management port on the ZNYX Switch Blade remains a mystery – we have had no luck doing anything useful with it.)

IP Addresses

We chose the Internet-benign Class B subnet of 192.168.xxx.xxx for our LAN. ‘206’ was assigned to use by our IT guru. We assigned the final digits to our own preference, using a “geographic” pattern.

Inside Crate:

· Slot 6:
Shelf Manager
192.168.206.106 (eth0)

· Slot5:
blank

· Slot4:
CPU Blade
192.168.206.104 (eth0)
192.168.206.114 (eth1)

· Slot3:
CPU Blade
192.168.206.103 (eth0)
192.168.206.113 (eth1)

· Slot2:
blank

· Slot1:
Znyx Switch
10.90.90.90 (eth0; default)

· (otherwise, 192.168.206.101)

Outside Crate:

Gateway

192.168.206.1

· Hermes (Windows PC)
 192.168.206.10 (NIC on local LAN)

· ILC3110 (Fedora Linux PC)
192.168.206.11

When patience is required…

According to the PICMG 3.0 Specifications, ‘Board FRUs’, including the Shelf Manager, CPU Blades, and Znyx Switch, have a well-defined operator interface. All Board FRUs have a ‘BLUE LED’ to indicate ‘Hot Swap’ state of the board. Without getting too in-depth, if the blue LED is ‘ON’ then the board is not ready for operation and if the LED is blinking, then it is unwise to physically disengage the board from the backplane. All Board FRUs also have a ‘Handle Switch’, which is activated or deactivated by the lower Handle.

The CPU Blade and Znyx Switch can have very long startup times. Board insertion or Reboot Button activation can have a long response time (70+ seconds). It is easy to believe the crate is doing nothing or has gotten hung up when it is simply taking a long time to recover from a reboot or power-up. During reboot CPU blades do output information through the serial port.

We have observed that there can be considerable difficulty inserting the boards into the crate. In no way do the boards seemlessly glide into their proper position. It takes quite a bit of finessing to get all the keying features lined up. Once in place though, we have not had mechanical failures – bent pins, for example.

(related – admission of senility, by MJH) One “failure” that took time to detect was an undervoltage condition, caused our being cheap. To achieve -48V at sufficient current, we strung together four 12V linear power supplies in series. On one occasion, one of the supplies experienced an overvoltage condition and triggered it’s crowbar, resulting in a system voltage of 35V. Under this condition:
1) the ShM seemed to boot

2) the CPU blade (only one was present at the time) booted

3) the Switch showed no sign of life (no LEDs at all)

Fiddling with the ShM (pressing on the front panel) caused the CPU blade to blink it’s hot-swap BLUE LED, as if to suggest that the ShM was not fully seated in the backplane. In other words, the symptoms pointed at acute system sensitivity (things almost working), and did not point at the power supply. The only “true” symptom (that was not understood until after the fact) was that the fans were lower in pitch (running slower)…

Another discovery: in an attempt to probe the IPMB lines, a dummy board was constructed (Zone 1 connector only) and placed in Slot 2. No front panel. Within less than a minute, the Switch in Slot 1 changed it’s Fan LED from green to Red, indicating an overtemp condition(!). Lesson learned: front panels and cover plates are required!

LED indicators
Shelf Manager

There is a green LED near the top Handle Switch that appears to be a power indicator. The full PICMG specs call for a mandatory ‘LED 1’ that should be red/amber to indicate non-operational modes. This one is green.

There are activity indicator LED around the ethernet ports.

There is a mandatory ‘BLUE LED’ for hot-swap status.
CPU Blade

The blades appear to have the mandatory ‘LED 1’, referred to as an Out-Of-Service LED with red output. Certainly, when the boards are inserted/extracted the LED lights up. This LED is denoted by a barred circle surrounding a + sign.
A second LED, perhaps ‘LED 2’, referred to as the Health LED is present. We have never observed a non-green color which would indicate a critical condition. This LED is denoted by a simple + sign.
There are two clusters of LEDs for each LAN connection. We have observed that when the Znyx Switch is in Slot 1, LAN A LEDs light up and when the Znyx Switch is in Slot 2, LAN B lights up. LAN A and LAN B to not appear to correspond directly to eth0 and eth1.

There is a mandatory ‘BLUE LED’ for hot-swap status.

Znyx Switch

The Health, OOS, and BLUE LEDs on the CPU Blade are all present with the same notations on the Znyx Switch.

There are a cluster of 16 ZREx Link/Activity LEDs. ZRE[0-2] LEDs correspond to the Front Panel ethernet ports and ZRE[3-6] correspond to slots in the Starter Kit. Slot 2 is a Hub slot, not a Node slot, and it makes sense there is no ZRE LED for Slot 2.

Two other LEDs to note are ‘OK’ and ‘CK’. ‘OK’ should be a constant green and ‘CK’ should be blinking green.
Shelf Manager Access: Command Line
The document: Ipm sentry shelf – external interface fully explains how to access the Command Line Interface (and Web Server.) There is a whole lot to explore. One must first log into BusyBox on the shelf manager, by telnet & ethernet or through the serial port,

> telnet root@192.168.206.106

Shelf Manager Access: Web Server

Again, the IPM external interface document is explains how to access the shelf manager via a website. From an html browser, enter the IP Address of the Shelf Manager:
>http://192.168.206.106

Shelf Manager Access: SNMP

From Linux-based machines, SNMP packages are first required. Perhaps a better repository is out there, but this one proved sufficient for a download source:

http://linuxsoft.cern.ch/fedora/linux/core/5/i386/os/repodata/
All of the following packages were required:

lm_sensors-2.9.2-1.i386.rpm

net-snmp-5.3-4.2.i386.rpm

net-snmp-utils-5.3-4.2.i386.rpm

By trial and error, we discovered the version 3 of SNMP will indeed retrieve data

from the shelf manager. Quite simply, to see the hot-swap state of the CPU Blade in Slot 4:

(there is a space at the end of the 1st line)

[]# snmpget -v 3 -u overlord -l authNoPriv -a MD5 -A possessor 192.168.206.106

 .iso.3.6.1.4.1.16394.2.1.1.2.1.11.136.0

returns:

[]# SNMPv2-SMI::enterprises.16394.2.1.1.2.1.11.136.0 = INTEGER: 4

Note: this was executed from CPU Blade 104 AND from the remote linux PC, 3110.
Note: the IPM-sentry external interface document was very helpful
For Windows-based machines we sought a Perl & SNMP solution. This was a bit trickier to solve. We found instructions from:

http://www.netadmintools.com/art489.html
From the Command Prompt, entered:

c:\ ppm

In the ppm utility, entered:

ppm>install net-snmp

ppm>rep add soulcage http://www.soulcage.net/ppds/PPDS.58/

ppm>install net-snmp

Once the Perl Libraries were installed, we wrote the following Perl script:

--

#!/usr/bin/perl

use NET::SNMP;

($session, $error) = Net::SNMP->session(

 -hostname => '192.168.206.106',

 -version => 'snmpv3',

 -username => 'overlord',

 -authpassword => 'possessor',

 -authprotocol => 'MD5',

 -port => 161

);

if (!defined($session)) {

 printf "Session creation error is: %s.\n", $error;

 exit 1;

}

@leaf = ('1.3.6.1.4.1.16394.2.1.1.2.1.11.136.0',

 '1.3.6.1.4.1.16394.2.1.1.2.1.11.132.0');

$result = $session->get_request(

 -varbindlist => \@leaf);

if (!defined($result)) {

 $error_message = $session->error;

 printf "Get-request error is: %s.\n", $error_message;

}

printf "%s Value:*%s*\n", $leaf[0], $result->{$leaf[0]};

printf "%s Value:*%s*\n", $leaf[1], $result->{$leaf[1]};

--

Executing the script from the Command Prompt yielded the following results:

>perl s.pl

1.3.6.1.4.1.16394.2.1.1.2.1.11.136.0 Value:*4*

1.3.6.1.4.1.16394.2.1.1.2.1.11.132.0 Value:*7*

This makes sense; these OIDs refer to Hot Swap States.

The leaf, 136 = (x88), corresponds to slot 4, which has a blade in it – note ‘Value’ = 4. The leaf, 132 (=x82), corresponds to slot 2, which had a board at some time and is now empty

Shelf Manager Access: RMCP

Similar to SNMP, Linux packages are needed to run RMCP.

http://linuxsoft.cern.ch/fedora/linux/core/5/i386/os/repodata/
The following package provided ipmitool, a utility that ‘understands’ IPMI.

OpenIPMI-tools-1.4.14-19.i386.rpm
From a Linux-based Command Prompt, we could execute:

[]# ipmitool -vv -I lan -P "" -H 192.168.206.106 chassis power status

A key to figuring this stuff out is the -vvv option, which gives verbose info, including raw bytes sent in the IPMI transfers. After decoding the raw bytes, with verbage from IPMI_2.0, we confirmed that Ipmitool does indeed use RMCP.

 see pg. 27 of IPMB Protocol
 see 5.1, 13.1.3, 13.9 of IPMI 2.0
ipmitool issues the following on each command-line request:

1) RMCP Ping

2) Get Channel Authentication Capabilites

3) Get Session Challenge

4) Activate Session

5) Set Session Privilege Level

6) - finally it gets to the interesting part of the command -
7) Close Session

We could execute the PICMG command 'Get PICMG Properties' with either
[]# ipmitool -I lan -P "" -H 192.168.206.106 raw 44 0 0

[]# ipmitool -I lan -P "" -H 192.168.206.106 picmg properties

Two useful commands are:

[]# ipmitool -I lan -P "" -H 192.168.206.106 -vvv sdr list all

[]# ipmitool -I lan -P "" -H 192.168.206.106 -vvv fru

They let you see the inner workings of IPMB. It is possible to decode the sdr repository with IPMI 2.0. The FRU format can be followed with FRU Storage Definition.

We were limited in what we could observe:

 - Can 'see' the FRUs controlled by the shelf manager but none of the

other IPM controllers. Can't get to Hot Swap state of the boards...

Can't get to the PICMG Address Table either...

 - There's a slew of 'ipmitool picmg ...' commands but they just return: 'Could not open device at /dev/ipmi0 or /dev/ipmi/0 or /dev/ipmidev/0: No such file or directory'

 - Couldn't get much out of i2c - master read/write command, everything tried so far has been invalid (mimic get device ID command)...

Running Apache on CPU Blade

We have installed Fedora Core 5 on a PC [3110] and 2 PC blades in the

ATCA Arrow Starter Kit. This version of Fedora includes the webserver

application Apache version 2.2.

To allow Apache to communicate through the firewall is a simple matter.

The default iptable script, "/etc/sysconfig/iptables", is set up by default on installation of Fedora as follows:

Firewall configuration written by system-config-securitylevel

Manual customization of this file is not recommended.

*filter

:INPUT ACCEPT [0:0]

:FORWARD ACCEPT [0:0]

:OUTPUT ACCEPT [0:0]

:RH-Firewall-1-INPUT - [0:0]

-A INPUT -j RH-Firewall-1-INPUT

-A FORWARD -j RH-Firewall-1-INPUT

-A RH-Firewall-1-INPUT -i lo -j ACCEPT

-A RH-Firewall-1-INPUT -p icmp --icmp-type any -j ACCEPT

-A RH-Firewall-1-INPUT -p 50 -j ACCEPT

-A RH-Firewall-1-INPUT -p 51 -j ACCEPT

-A RH-Firewall-1-INPUT -p udp --dport 5353 -d 224.0.0.251 -j ACCEPT

-A RH-Firewall-1-INPUT -p udp -m udp --dport 631 -j ACCEPT

-A RH-Firewall-1-INPUT -p tcp -m tcp --dport 631 -j ACCEPT

-A RH-Firewall-1-INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

-A RH-Firewall-1-INPUT -m state --state NEW -m tcp -p tcp --dport 22 -j ACCEPT

-A RH-Firewall-1-INPUT -j REJECT --reject-with icmp-host-prohibited

COMMIT

The http port needs to be opened for Apache to listen. Adding the following line to the script is sufficient:

-A RH-Firewall-1-INPUT -p tcp -m tcp --dport 80 -j ACCEPT

The other place to look to make sure Apache is indeed listening is in the "/etc/httpd/conf/httpd.conf" file. By default, this file is set up to listen on the http port. There is a paragraph for the 'Listen' parameter. We kept it untouched as:

Listen 80

Another helpful paragraph is 'DocumentRoot' - this is where html code should reside. After our installation this read as follows:

DocumentRoot "/var/www/html"

To verify that Apache was serving out html we set up a simple html file, made sure

the iptables and httpd.conf were set up to enable listening on the http port, and launched a webbrowser from a different PC on the same LAN to query the port.

The file "/var/www/html/index.html" was saved with the following text:

<html>Hello world.<\html>

on a target PC blade (192.168.206.104 on the LAN).

The file, "/etc/sysconfig/iptables", was updated and "/etc/httpd/conf/httpd.conf" settings were confirmed. The following command sequence refreshed iptables and Apache:

[]# service iptables stop

[]# service iptables start

[]# apachectl stop

[]# apachectl start

It is a good sign if after issuing the following command:

[]# iptables -L -v

that the following text is displayed somewhere to the terminal ({...} indicates verbage):

ACCEPT tcp {...} tcp dpt:http

Internet Explorer was launched on PC 'Hermes' (192.168.206.10 on the LAN) and we directed the browser to query "http://192.168.206.104". Indeed, the browser responded with the statement "Hello world."

Running High-Availability Heartbeat on CPU Blades
Primary source for info: http://linux-ha.org......

The basic hardware configuration is the ATCA Starter Kit with the Znyx Switch in slot 1, CPU Blade 'atca4' in slot 4, CPU Blade 'atca3' in slot 3. The following contents are in each respective blade: "/etc/host"

'atca3':

127.0.0.1 atca3 localhost.localdomain localhost

and

'atca4':

127.0.0.1 atca4 localhost.localdomain localhost

On 'atca3' eth0 is set up to be 192.168.206.103

On 'atca4' eht0 is set up to be 192.168.206.104

For Fedora Core 5, the following command grabs 'heartbeat' off the the

Internet and installs it:

[]# sudo yum install heartbeat

We needed to write three files:

1) Configuration file: "/etc/ha.d/ha.cf"

logfile /etc/ha.d/ha-log

bcast eth0

keepalive 1

warntime 20

deadtime 40

initdead 80

udpport 694

auto_failback off

node atca4

node atca3

2) Resource file: "/etc/ha.d/haresources"

atca4 192.168.206.100 httpd

3) Authorization file: "/etc/ha.d/authkeys"

auth 1

1 crc

To get the authorization key to work, we needed to execute:

[]# chmod 600 /etc/ha.d/authkeys

To start/stop heartbeat, we use the following commands:

[]# /etc/init.d/heartbeat start

[]# /etc/init.d/heartbeat stop

The heartbeats were initially not communicating - as evidenced in

/etc/ha.d/ha-log files that reported each other dead. The following line

was added to /etc/sysconfig/iptables:

-A RH-Firewall-1-INPUT -p udp -m udp --dport 694 -j ACCEPT

Running web browser from the Winows PC{192.168.206.10) to query 192.168.206.100

returns html from 'atca4'. After removing 'atca4' from the crate, the same query returns html from 'atca3'.
